6,831 research outputs found

    Prompt Photon Results from the Tevatron

    Get PDF

    Tevatron-for-LHC Report of the QCD Working Group

    Get PDF
    The experiments at Run 2 of the Tevatron have each accumulated over 1 inverse femtobarn of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focussed on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.Comment: 156 pages, Tevatron-for-LHC Conference Report of the QCD Working Grou

    Measurement of the ttˉproductioncrosssectionint\bar{t} production cross section in p\bar{p}collisionsat collisions at \sqrt{s}$ = 1.8 TeV

    Full text link
    We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses ttˉt\bar{t} decays to the final states e+νe+\nu+jets and μ+ν\mu+\nu+jets. We search for bb quarks from tt decays via secondary-vertex identification or the identification of semileptonic decays of the bb and cascade cc quarks. The background to the ttˉt\bar{t} production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 GeV/c2GeV/c^2, we measure σttˉ=5.1±1.5\sigma_{t\bar{t}}=5.1 \pm 1.5 pb and σttˉ=9.2±4.3\sigma_{t\bar{t}}=9.2 \pm 4.3 pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other ttˉt\bar{t} decay channels and obtain σttˉ=6.51.4+1.7\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4} pb.Comment: The manuscript consists of 130 pages, 35 figures and 42 tables in RevTex. The manuscript is submitted to Physical Review D. Fixed typo in author lis

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Search for Chargino-Neutralino Associated Production at the Fermilab Tevatron Collider

    Full text link
    We have searched in ppˉp \bar{p} collisions at s\sqrt{s} = 1.8 TeV for events with three charged leptons and missing transverse energy. In the Minimal Supersymmetric Standard Model, we expect trilepton events from chargino-neutralino (\chione \chitwo) pair production, with subsequent decay into leptons. We observe no candidate e+ee±e^+e^-e^\pm, e+eμ±e^+e^-\mu^\pm, e±μ+μe^\pm\mu^+\mu^- or μ+μμ±\mu^+\mu^-\mu^\pm events in 106 pb1^{-1} integrated luminosity. We present limits on the sum of the branching ratios times cross section for the four channels: \sigma_{\chione\chitwo}\cdot BR(\chione\chitwo\to 3\ell+X) 81.5 \mgev\sp and M_\chitwo > 82.2 \mgev\sp for tanβ=2\tan\beta=2, μ=600\mu =-600~\mgev\sp and M_\squark= M_\gluino.Comment: 9 pages and 3 figure

    Search for a Fourth-Generation Quark More Massive than the Z0 Boson in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We present the results of a search for pair production of a fourth-generation charge -1/3 quark (b') in sqrt(s)=1.8 TeV ppbar collisions using 88 pb^(-1) of data obtained with the Collider Detector at Fermilab. We assume that both quarks decay via the flavor-changing neutral current process b' -> bZ and that the b' mass is greater than m_Z + m_b. We studied the decay mode b'b'bar -> ZZ b bbar where one Z0 decays into e^+e^- or mu^+ mu^- and the other decays hadronically, giving a signature of two leptons plus jets. An upper limit on the cross section of ppbar -> b'b'bar times [BR (b' -> bZ)]^2 is established as a function of the b' mass. We exclude at 95% confidence level a b' quark with mass between 100 and 199 GeV/c^2 for BR(b' -> bZ) = 100%.Comment: 12 pages, 2 figures, submitted to Phys. Rev. Letters on 9/12/9

    Production of Y(1S) Mesons from chib Decays in pp(bar) Collisions at sqrt(s)=1.8 TeV

    Full text link
    We have reconstructed the radiative decays χb(1P)Υ(1S)γ\chi_{b}(1P) \to \Upsilon(1S) \gamma and χb(2P)Υ(1S)γ\chi_{b}(2P) \to \Upsilon(1S) \gamma in ppˉp \bar{p} collisions at s=1.8\sqrt{s} = 1.8 TeV, and measured the fraction of Υ(1S)\Upsilon(1S) mesons that originate from these decays. For Υ(1S)\Upsilon(1S) mesons with pTΥ>8.0p^{\Upsilon}_{T}>8.0 GeV/cc, the fractions that come from χb(1P)\chi_{b}(1P) and χb(2P)\chi_{b}(2P) decays are (27.1±6.9(stat)±4.4(sys))(27.1\pm6.9(stat)\pm4.4(sys))% and (10.5±4.4(stat)±1.4(sys))(10.5\pm4.4(stat)\pm1.4(sys))%, respectively. We have derived the fraction of directly produced Υ(1S)\Upsilon(1S) mesons to be (50.9±8.2(stat)±9.0(sys))(50.9\pm8.2(stat)\pm9.0(sys))%.Comment: 13 Pages, 2 figure

    Limits on Gravitino Production and New Processes with Large Missing Transverse Energy in p-pbar Collisions at sqrt(s)=1.8 TeV

    Get PDF
    Events collected by the Collider Detector at Fermilab (CDF) with an energetic jet plus large missing transverse energy can be used to search for physics beyond the Standard Model. We see no deviations from the expected background and set upper limits on the production of new processes. We consider in addition the production of light gravitinos within the framework of the Gauge Mediated Supersymmetry Breaking models and set a limit at 95% confidence level on the breaking scale sqrt(F) >= 217 GeV, which excludes gravitino masses smaller than 1.1x10^-5 eV/c^2.Comment: 13 pages, 4 figures. Submitted to Physical Review Letter

    Measurement of the Helicity of W Bosons in Top Quark Decays

    Full text link
    We use the transverse momentum spectrum of leptons in the decay chain t-->bW with W-->l nu to measure the helicity of the W bosons in the top quark rest frame. Our measurement uses a ttbar sample isolated in 106 +/- 4 inverse picobarns of data collected in ppbar collisions at sqrt(s)=1.8 TeV with the CDF detector at the Fermilab Tevatron. Assuming a standard V--A weak decay, we find that the fraction of W's with zero helicity in the top rest frame is F_0 = 0.91 +/- 0.37 (stat) +/- 0.13 (syst), consistent with the standard model prediction of F_0=0.70 for a top mass of 175 GeV/c**2.Comment: Submitted to PRL. 8 pages, 2 figure

    Search for the Supersymmetric Partner of the Top-Quark in ppˉp \bar{p} Collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV}

    Full text link
    We report on a search for the supersymmetric partner of the top quark (stop) produced in ttˉt \bar{t} events using 110pb1110 {\rm pb}^{-1} of ppˉp \bar{p} collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV} recorded with the Collider Detector at Fermilab. In the case of a light stop squark, the decay of the top quark into stop plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with Standard Model ttˉt \bar{t} production and decay. Hence, we set limits on the branching ratio of the top quark decaying into stop plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 {\rm GeV/c}2^{2}.Comment: 11 pages, 4 figure
    corecore